Что такое электрический ток? Условия существования электрического тока: характеристики и действия. Постоянный ток, его характеристики. Условия необходимые для существования электрического тока Что необходимо для существования тока в проводнике

08.09.2022
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Для начала ответим себе на вопрос, что такое электрический ток. Простая батарейка, стоящая на столе, сама по себе ток не создает. И фонарик, лежащий на столе, ток через свои светодиоды просто так, ни с того ни с сего, не создаст. Чтобы появился ток, что-то куда-то должно потечь, хотя бы начать двигаться, а для этого цепь из светодиодов фонарика и батарейки необходимо замкнуть. Не даром, в былые времена электрический ток сравнивали с движением некой заряженной жидкости.

На самом деле мы теперь знаем, что электрический ток - это направленное движение заряженных частиц, и что более близким к реальности аналогом был бы заряженный газ, - газ заряженных частиц, движущийся под действием электрического поля. Но обо всем по порядку.


Электрический ток - это направленное движение заряженных частиц

Итак, электрический ток - это движение заряженных частиц, но даже хаотичное движение заряженных частиц - это тоже движение, однако оно еще не является током. Так и молекулы жидкости, все время пребывающие в тепловом движении, течения не создают, ведь суммарное перемещение всего объема покоящейся жидкости ровно нулю.

Чтобы возникло течение жидкости, должно возникнуть суммарное перемещение, то есть общее движение молекул жидкости должно стать направленным. Так хаотичное движение молекул сложится с направленным движением всего объема, и возникнет течение всего объема жидкости.

Аналогично обстоит дело и с электрическим током - направленное движение электрически заряженных частиц - есть электрический ток. Скорость теплового движения заряженных частиц, например в металле, измеряется сотнями метров в секунду, однако при направленном движении, когда в проводнике установлен какой-то определенный ток, скорость общего движения частиц измеряется долями и единицами миллиметров в секунду.

Так, если в металлическом проводнике сечением 1 кв.мм течет постоянный ток равный 10 А, то средняя скорость упорядоченного движения электронов составит от 0,6 до 6 миллиметров в секунду. Это уже будет электрическим током. И этого медленного движения электронов достаточно, чтобы проводник, например из нихрома, неплохо разогрелся, повинуясь .

Скорость частиц - это не скорость распространения электрического поля!

Отметим, что ток начинается в проводнике почти мгновенно по всему объему, то есть распространяется это «движение» по проводнику со скоростью света, а вот движение непосредственно самих заряженных частиц в 100 миллиардов раз медленнее. Можно рассмотреть аналогию с трубой, по которой течет жидкость.


1. Для существования электрического тока необходимы заряженные частицы

Электроны в металлах и в вакууме, ионы в растворах электролитов - служат носителями заряда и обеспечивают наличие тока в разных веществах. В металлах электроны очень подвижны, некоторые из них свободно могут двигаться от атома к атому, словно газ заполняя пространство между узлами кристаллической решетки.

В электронных лампах электроны покидают катод в процессе термоэлектронной эмиссии, устремляясь под действием электрического поля к аноду. В электролитах молекулы распадаются в воде на положительно и отрицательно заряженные части, и становятся ионами - свободными носителями заряда в электролитах. То есть везде, где может существовать электрический ток, есть свободные носители заряда, способные перемещаться . Это и есть первое условие существования электрического тока - наличие свободных носителей заряда.


2. Второе условие существования электрического тока - на заряд должны действовать сторонние силы

Если теперь взглянуть на проводник, допустим это медный провод, то можно задаться вопросом: а что нужно для того, чтобы электрический ток в нем возник? Заряженные частицы, электроны, есть, они способны свободно перемещаться.

Что заставит их двигаться? Известно, что электрически заряженная частица взаимодействует с электрическим полем. Следовательно в проводнике необходимо создать электрическое поле, тогда в каждой точке проводника возникнет потенциал, между концами проводника будет иметь место разность потенциалов, и электроны придут в движение по направлению поля - по направлению от «-» к «+», то есть в направлении против вектора напряженности электрического поля. Электрическое поле станет ускорять электроны, увеличивая их (кинетическую и магнитную) энергию.

В итоге, если мы рассматриваем просто приложенное снаружи к проводнику электрическое поле (поместили проводник в электрическое поле вдоль силовых линий), то электроны станут скапливаться у одного конца провода, и на этом конце возникнет отрицательный заряд, а поскольку с другого конца провода электроны сместились, то на нем будет иметь место заряд положительный.

В результате электрическое поле проводника, заряженного приложенным снаружи электрическим полем, будет такого направления, чтобы своим действием ослаблять внешнее электрическое поле.

Процесс перераспределения зарядов протечет почти мгновенно, и по его завершении ток в проводнике прекратится. Результирующее электрическое поле внутри проводника станет равным нулю, а напряженность по краям окажется равной по модулю, но противоположной по направлению к приложенному снаружи электрическому полю.

Если электрическое поле в проводнике создается источником постоянного тока, например батарейкой, то такой источник станет для проводника источником сторонних сил, то есть тем источником, который создаст в проводнике постоянную ЭДС, и будет поддерживать разность потенциалов. Очевидно, чтобы ток источником сторонних сил поддерживался, цепь должна быть замкнутой.



Сторонние силы. Электродвижущая сила и напряжение.

Сторонние силы – это такие силы, которые отличаются по природе от сил электростатического поля.

Эти силы могут быть обусловлены химическими процессами, диффузией носителей тока в неоднородной среде, электрическими (но не электростатическими) полями, порождаемыми переменными во времени магнитными полями, и т. д.

ЭДС - физическая величина, равная работе, совершаемой сторонними силами при перемещении по электрической цепи единичного положительного заряда:
ε = А ст./q Единица измерения - 1 В (Вольт)

Напряжение - физическая величина, равная работе, совершаемой сторонними и электрическими силами при перемещении единичного положительного заряда.
U = (A ст.+ А эл.)/q Единица измерения - 1 В.

Электрическая цепь. Однородный и неоднородный участок цепи.

Однородные и неоднородные участки цепи

Однородный участок цепи – участок цепи, на котором не действуют никакие сторонние силы(нет ист.тока)

Неоднородный участок цепи – участок цепи, на котором есть источник тока.

Электри́ческая цепь

Электрическая цепь. Внешний и внутренний участок цепи, падение напряжения.

Электри́ческая цепь - совокупность устройств, элементов, предназначенных для протекания электрического тока, электромагнитных процессов.

Электрическая цепь может быть разделена на два участка: внешний и внутренний.

Внешний участок, или, как говорят, внешняя цепь, состоит из одного или нескольких приемников электрической энергии, соединительных проводов и различных вспомогательных устройств, включенных в эту цепь.

Внутренний участок, или внутренняя цепь,- это сам источник.

Падение напряжения - постепенное уменьшение напряжения вдоль проводника, по которому течёт электрический ток, обусловленное тем, что проводник обладает активным сопротивлением.

Сопротивление проводника

Сопротивление – величина, пропорциональная длине проводника l и обратно пропорциональна площади его поперечного сечения S

Чем больше сопротивление проводника, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем легче электрическому току пройти через этот проводник.

Удельное электрическое сопротивление проводника ρ [Ом*м] ρ=RS/l R = ρ*l/S

Закон Ома для участка цепи и для замкнутой цепи

Закон Ома для участка электрической цепи - сила тока на участке электрической цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению участка.

Закон Ома для полной электрической цепи - сила тока в электрической цепи прямо пропорциональна ЭДС источника и обратно пропорциональна полному сопротивлению цепи (сумме внешнего и внутреннего сопротивлений)

I = ε / (R + r). где R - сопротивление внешнего участка цепи,
r - внутреннее сопротивление.

Последовательное соединение потребителей энергии

При последовательном соединении проводники соединены последовательно, то есть друг за другом, при этом I=const, U=U 1 +U 2 +U 3 +…+U n и R=R 1 +R 2 +R 3 +…+R n

Параллельное соединение источников тока.

Работа электрического тока

Работа эл.тока А равна произведению величины перемещаемого заряда Q на напряжение U

A=Q*U [A]=Дж, [U]=B, [Q]=Кл, [t]=c.

Т.к. I=Q/t, => Q=I*t, значит A=I*U*t

По закону Ома для участка цепи I=U/R, U=I*R

A=I*U*T => A=U 2 *t/R(удобно при паралл.соед.) => A=I 2 *R*t(удобно при последов.)

Природа света.

Природа света - волновая.

17 век Христиан Гюйгенс: 1) дифракция-огибание светом препятствий 2)интерференция-сложение волн.

19 век - теория максвелла (скорость света – частный случай электромагнитных волн) - электромагнитная теория скорость распространения электромагнитных волн в вакууме 3*10 8 м/c равная скорости света в вакууме. 299 тыс. км/с

17в век О.Ремер астрономическим методом получил скорость света примерно 214,3 км/с

19 век . Физо скорость света примерно 313тыс.км/с

Природа света – квантовая.

примерно 500 лет до н/э Пифагор: свет - поток частиц.

17 век Исак Ньютон придерживался этой же теории. Карпускула(от лат.) – частица.

Карпускулярная теория Ньютона: 1) прямолинейное распространение свет 2) закон отражения 3) образование тени от предметов

19 в Генрих Герц открыл явление фотоэффекта.

20 век. Свет имеет двойственную природу - обладает корпускулярно-волновым дуализмом : при распространении - как волна, а при излучении и поглощении - как поток частиц.

связь между длинной иволны лямда и частотой ню

лямда=с/ню с - скорость света в вакууме [м/с] лямда [м] ню [Гц]

Законы отражения

1.Падающий луч, отражающий луч и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости.

2Угол отражения γ равен углу падения α: γ = α

Зеркальное отражение - если шероховатости меньше лямды и дифузное шероховатости сравнимы с лямда

Диффузное отражение света. Зеркальное отражение света.

Законы преломления света.

Закон преломления света: падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления γ есть величина, постоянная для двух данных сред:

Постоянную величину n называют относительным показателем преломления второй среды относительно первой. Показатель преломления среды относительно вакуума называют абсолютным показателем преломления.

Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления:

Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ 1 к скорости их распространения во второй среде υ 2:

Природа света из 26.

Интерференция волн – это явление наложения когерентных волн; свойственно волнам любой природы (механическим, электромагнитным и т.д.)

Когерентные волны - это волны, испускаемые источниками, имеющими одинаковую частоту и постоянную разность фаз.

При наложении когерентных волн в какой-либо точке пространства амплитуда колебаний (смещения) этой точки будет зависеть от разности расстояний от источников до рассматриваемой точки. Эта разность расстояний называется разностью хода.
При наложении когерентных волн возможны два предельных случая:

Условие максимума:

где

Разность хода волн равна целому числу длин волн (иначе четному числу длин полуволн).

В этом случае волны в рассматриваемой точке приходят с одинаковыми фазами и усиливают друг друга – амплитуда колебаний этой точки максимальна и равна удвоенной амплитуде.

Условие минимума:

, где

Разность хода волн равна нечетному числу длин полуволн.

Волны приходят в рассматриваемую точку в противофазе и гасят друг друга.
Амплитуда колебаний данной точки равна нулю.

В результате наложения когерентных волн (интерференции волн) образуется интерференционная картина.

При интерференции волн амплитуда колебаний каждой точки не меняется во времени и остается постоянной.

При наложении некогерентных волн нет интерференционной картины, т.к. амплитуда колебаний каждой точки меняется со временем.

Интерференция света

1802г. Английский физик Томас Юнг поставил опыт, в котором наблюдалась интерференция света.


Опыт Томаса Юнга

От одного источника через щель А формировались два пучка света (через щели В и С), далее пучки света падали на экран Э. Так как воны от щелей В и С были когерентными, на экране можно было наблюдать интерференционную картину: чередование светлых и темных полос.

Светлые полосы – волны усиливали друг друга (соблюдалось условие максимума).
Темные полосы – волны складывались в противофазе и гасили друг друга (условие минимума).

Если в опыте Юнга использовался источник монохроматического света (одной длины волны, то на экране наблюдались только светлые и темные полосы данного цвета.)

Если источник давал белый свет (т.е. сложный по своему составу), то на экране в области светлых полос наблюдались радужные полосы. Радужность объяснялась тем, что условия максимумов и минимумов зависят от длин волн.


Интерференция в тонких пленках

Явление интерференции можно наблюдать, например:

Радужные разводы на поверхности жидкости при разливе нефти, керосина, в мыльных пузырях;

Толщина пленки должна быть больше длины световой волны.

При проведении своего опыта Юнгу впервые удалось измерить длину световой волны.

В результате опыта Юнг доказал, что свет обладает волновыми свойствами.

Применение интерференции:
- интерферометры – приборы для измерения длины световой волны
- просветление оптики (в оптических приборах при прохождении света через объектив потери света составляют до 50%) – все стеклянные детали покрывают тонкой пленкой с показателем преломления чуть меньше, чем у стекла; перераспределяются интерференционные максимумы и минимумы и потери света уменьшаются.

Природа света из 26.

ДИФРАКЦИЯ СВЕТА

Дифракция - это явление, присущее волновым процессам для любого рода волн.

Дифракция света – это отклонение световых лучей от прямолинейного распространения при прохождении сквозь узкие щели, малые отверстия или при огибании малых препятствий.

Явление дифракции света доказывает, что свет обладает волновыми свойствами.

Для наблюдения дифракции можно:

Пропустить свет от источника через очень малое отверстие или расположить экран на большом расстоянии от отверстия. Тогда на экране наблюдается сложная картина из светлых и темных концентрических колец.
- или направить свет на тонкую проволоку, тогда на экране будут наблюдаться светлые и темные полосы, а в случае белого света – радужная полоса.

Дифракционная решетка

Это оптический прибор для измерения длины световой волны.

Дифракционная решетка представляет собой совокупность большого числа очень узких щелей, разделенных непрозрачными промежутками.

Если на решетку падает монохроматическая волна. то щели (вторичные источники) создают когерентные волны. За решеткой ставится собирающая линза, далее – экран. В результате интерференции света от различных щелей решетки на экране наблюдается система максимумов и минимумов.


Разность хода между волнами от краев соседних щелей равна длине отрезка АС. Если на этом отрезке укладыается целое число длин волн, то волны от всех щелей будут усиливать друг друга. При использовании белого света все максимумы (кроме центрального) имеют радужную окраску.

Итак, условие максимума:

где k – порядок (или номер) дифракционного спектра

Чем больше штрихов нанесено на решетке, тем дальше друг от друга находятся дифракционные спектры и тем меньше ширина каждой линии на экране, поэтому максимумы видны в виде раздельных линий, т.е. разрешающая сила решетки увеличивается.

Точность измерения длины волны тем больше, чем больше штрихов приходится на единицу длины решетки.

ПОЛЯРИЗАЦИЯ СВЕТА

Поляризация волн

Свойство поперечных волн – поляризация.

Поляризованной волной называется такая поперечная волна, в которой колебания всех частиц происходят в одной плоскости.

Поляризация света

Опыт с турмалином – доказательство поперечности световых волн.

Кристалл турмалина – это прозрачный, зеленого цвета минерал, обладающий осью симметрии.

В луче света от обычного источника присутствуют колебания векторов напряженности электрического поля Е и магнитной индукции В всевозможных направлений, перпендикулярных направлению распространения световой волны. Такая волна называется естественной волной.

При прохождении через кристалл турмалина свет поляризуется.
У поляризованного света колебания вектора напряженности Е происходят только в одной плоскости, которая совпадает с осью симметрии кристалла.

Поляризация света после прохождения турмалина обнаруживается, если за первым кристаллом (поляризатором) поставить второй кристалл турмалина (анализатор).
При одинаково направленных осях двух кристаллов световой луч пройдет через оба и лишь чуть ослабнет за счет частичного поглощения света кристаллами.

Схема действия поляризатора и стоящего за ним анализатора:

Если второй кристалл начать поворачивать, т.е. смещать положение оси симметрии второго кристалла относительно первого, то луч будет постепенно гаснуть и погаснет совершенно, когда положение осей симметрии обоих кристаллов станет взаимно перпендикулярным.

Применение поляризованного света:

Плавная регулировка освещенности с помощью двух поляроидов
- для гашения бликов при фотографировании (блики гасят, поместив между источником света и отражающей поверхностью поляроид)

Для устранения слепящего действия фар встречных машин.

Поляроид, поляризационный светофильтр, один из основных типов оптических линейных поляризаторов; представляет собой тонкую поляризационную плёнку, заклеенную для защиты от механических повреждений и действия влаги между двумя прозрачными пластинками (плёнками).

ДИСПЕРСИЯ

Луч белого света, проходя через трехгранную призму не только отклоняется, но и разлагается на составляющие цветные лучи.
Это явление установил Исаак Ньютон, проведя серию опытов.

Опыты Ньютона

Опыт по разложению белого света в спектр:

или

Ньютон направил луч солнечного света через маленькое отверстие на стеклянную призму.
Попадая на призму, луч преломлялся и давал на противоположной стене удлиненное изображение с радужным чередованием цветов – спектр.

Опыт по синтезу (получению) белого света:

Сначала Ньютон направил солнечный луч на призму. Затем, собрав вышедшие из призмы цветные лучи с помощью собирающей линзы, Ньютон на белой стене получил вместо окрашенной полосы белое изображение отверстия.

Выводы Ньютона:

Призма не меняет свет, а только разлагает его на составляющие
- световые лучи, отличающиеся по цвету, отличаются по степени преломляемости; наиболее сильно преломляются фиолетовые лучи, менее сильно – красные

Красный свет, который меньше преломляется, имеет наибольшую скорость, а фиолетовый - наименьшую, поэтому призма и разлагает свет.
Зависимость показателя преломления света от его цвета называется дисперсией.

Запомни фразу, начальные буквы слов которой дают последовательность цветов спектра:

"Каждый Охотник Желает Знать, Где Сидит Фазан".

Спектр белого света:

Выводы:

Призма разлагает свет
- белый свет является сложным (составным)
- фиолетовые лучи преломляются сильнее красных.

Цвет луча света определяется его частотой колебаний.

При переходе из одной среды в другую изменяются скорость света и длина волны, а частота, определяющая цвет остается постоянной.

Границы диапазонов белого света и его составляющих принято характеризовать их длинами волн в вакууме.
Белый свет – это совокупность волн длинами от 380 до 760 нм.

Где можно наблюдать явление дисперсии?

При прохождении света через призму
- преломление света в водяных каплях, например, на траве или в атмосфере при образовании радуги
- вокруг фонарей в тумане.

Как объяснить цвет любого предмета?

Белая бумага отражает все падающие на нее лучи различных цветов
- красный предмет отражает только лучи красного цвета, а лучи остальных цветов поглощает
-
Глаз воспринимает отраженные от предмета лучи определенной длины волны и таким образом воспринимает цвет предмета.

Спектральный анализ - совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др.

Электрический ток и условия его существования.

Электрический ток – это упорядоченное, направленное, движение свободных зарядов в проводнике.

Постоянный ток – это эл.ток, характеристики которого со временем не меняются.

Условия существования электрического тока
Для возникновения и поддержания тока в какой-либо среде необходимо выполнение двух условий:
-наличие в среде свободных электрических зарядов
-создание в среде электрического поля.
В разных средах носителями электрического тока являются разные заряженные частицы.

Сила тока I скалярная величина, характеризующая заряд Q, проходящий через поперечное сечение проводника за единицу времени. Q=q*N I=Q/t

Сила тока измеряется в амперах, а заряд в кулонах. I=[A], Q=[Кл]

Плотность тока – j векторная величина j V q , показывает силу тока на единицу S сеч.

j=I/S сеч Площадь сечения S сеч. измеряется в квадратных метрах

Электрический ток - упорядоченное по направлению движение электрических зарядов. За направление тока принимается направление движения положительных зарядов.


Прохождение тока по проводнику сопровождается следующими его действиями:

* магнитным (наблюдается во всех проводниках)
* тепловым (наблюдается во всех проводниках, кроме сверхпроводников)
* химическим (наблюдается в электролитах).

Для возникновения и поддержания тока в какой-либо среде необходимо выполнение двух условий:

* наличие в среде свободных электрических зарядов
* создание в среде электрического поля.

Электрическое поле в среде необходимо для создания направленного движения свободных зарядов. Как известно, на заряд q в электрическом поле напряженностью E действует сила F = q* E, которая и заставляет свободные заряды двигаться в направлении электрического поля. Признаком существования в проводнике электрического поля является наличие не равной нулю разности потенциалов между любыми двумя точками проводника,
Однако, электрические силы не могут длительное время поддерживать электрический ток. Направленное движение электрических зарядов через некоторое время приводит к выравниванию потенциалов на концах проводника и, следовательно, к исчезновению в нем электрического поля.

Для поддержания тока в электрической цепи на заряды кроме кулоновских сил должны действовать силы неэлектрической природы (сторонние силы).
Устройство, создающее сторонние силы, поддерживающее разность потенциалов в цепи и преобразующее различные виды энергии в электрическую энергию, называется источником тока.
Для существования электрического тока в замкнутой цепи необходимо включение в нее источника тока.
основные характеристики

1. Сила тока - I, единица измерения - 1 А (Ампер).
Силой тока называется величина, равная заряду, протекающему через поперечное сечение проводника за единицу времени.
I = Dq/Dt .

Формула справедлива для постоянного тока, при котором сила тока и его направление не изменяются со временем. Если сила тока и его направление изменяются со временем, то такой ток называется переменным.
Для переменного тока:
I = lim Dq/Dt ,
Dt - 0

т.е. I = q", где q" - производная от заряда по времени.
2. Плотность тока - j, единица измерения - 1 А/м2.
Плотностью тока называется величина, равная силе тока, протекающего через единичное поперечное сечение проводника:
j = I/S .

3. Электродвижущая сила источника тока - э.д.с. (e), единица измерения - 1 В (Вольт). Э.д.с.- физическая величина, равная работе, совершаемой сторонними силами при перемещении по электрической цепи единичного положительного заряда:
e = Аст./q .

4. Сопротивление проводника - R, единица измерения - 1 Ом.
Под действием электрического поля в вакууме свободные заряды двигались бы ускоренно. В веществе они движутся в среднем равномерно, т.к. часть энергии отдают частицам вещества при столкновениях.

Теория утверждает, что энергия упорядоченного движения зарядов рассеивается на искажениях кристаллической решетки. Исходя из природы электрического сопротивления, следует, что
R = r*l/S ,

где
l - длина проводника,
S - площадь поперечного сечения,
r - коэффициент пропорциональности, названный удельным сопротивлением материала.
Эта формула хорошо подтверждается на опыте.
Взаимодействие частиц проводника с движущимися в токе зарядами зависит от хаотического движения частиц, т.е. от температуры проводника. Известно, что
r = r0(1 + a t) ,
R = R0(1 + a t) .

Коэффициент a называется температурным коэффициентом сопротивления:
a = (R - R0)/R0*t .

Для химически чистых металлов a > 0 и равно 1/273 К-1. Для сплавов температурные коэффициенты имеют меньшее значение. Зависимость r(t) для металлов линейная:

В 1911 году открыто явление сверхпроводимости, заключающееся в том, что при температуре, близкой к абсолютному нулю, сопротивление некоторых металлов падает скачком до нуля.

У некоторых веществ (например, у электролитов и полупроводников) удельное сопротивление с ростом температуры уменьшается, что объясняется ростом концентрации свободных зарядов.
Величина, обратная удельному сопротивлению, называется удельной электрической проводимостью s
s = 1/r .

5. Напряжение - U , единица измерения - 1 В.
Напряжение - физическая величина, равная работе, совершаемой сторонними и электрическими силами при перемещении единичного положительного заряда.

U = (Aст.+ Аэл.)/q .

Так как Аст./q = e, а Аэл./q = f1-f2, то
U = e + (f1 - f2) .

Заряд в движении. Он может принимать форму внезапного разряда статического электричества, такого как, например, молния. Или это может быть контролируемый процесс в генераторах, батареях, солнечных или топливных элементах. Сегодня мы рассмотрим само понятие "электрический ток" и условия существования электрического тока.

Электрическая энергия

Большая часть электроэнергии, которую мы используем, поступает в виде переменного тока из электрической сети. Он создается генераторами, работающими по закону индукции Фарадея, благодаря которому изменяющееся магнитное поле может индуцировать электрический ток в проводнике.

Генераторы имеют вращающиеся катушки провода, которые проходят через магнитные поля по мере их вращения. Когда катушки вращаются, они открываются и закрываются относительно магнитного поля и создают электрический ток, меняющий направление на каждом повороте. Ток проходит через полный цикл вперед и назад 60 раз в секунду.

Генераторы могут питаться от паровых турбин, нагретых углем, природным газом, нефтью или ядерным реактором. Из генератора ток проходит через ряд трансформаторов, где растет его напряжение. Диаметр проводов определяет величину и силу тока, которую они могут переносить без перегрева и потери энергии, а напряжение ограничено только тем, насколько хорошо линии изолированы от земли.

Интересно отметить, что ток переносится только одним проводом, а не двумя. Две его стороны обозначаются как положительная и отрицательная. Однако, поскольку полярность переменного тока изменяется 60 раз в секунду, они имеют и другие названия - горячие (магистральные линии электропередач) и заземленные (проходящие под землей для замыкания цепи).

Зачем нужен электрический ток?

Существует масса возможностей применения электротока: он может осветить ваш дом, вымыть и высушить одежду, поднять дверь вашего гаража, заставить вскипеть воду в чайнике и дать возможность работать другим бытовым предметам, которые значительно облегчают нам жизнь. Тем не менее все более важным становится способность тока передавать информацию.

При подключении к Интернету компьютером используется лишь небольшая часть электрического тока, но это то, без чего современный человек не представляет своей жизни.

Понятие об электрическом токе

Подобно речному течению, потоку молекул воды, электрический ток - это поток заряженных частиц. Что это такое, что его вызывает, и почему он не всегда идет в одном направлении? Когда вы слышите слово «течет», о чем вы думаете? Возможно, это будет река. Это хорошая ассоциация, потому что именно по этой причине электрический ток получил свое название. Он очень похож на поток воды, только вместо молекул воды, движущихся по руслу, заряженные частицы движутся по проводнику.

Среди условий, необходимых для существования электрического тока, есть пункт, предусматривающий наличие электронов. Атомы в проводящем материале имеют много этих свободных заряженных частиц, которые плавают вокруг и между атомами. Их движение является случайным, поэтому поток в каком-либо заданном направлении отсутствует. Что же нужно, чтобы существовал электрический ток?

Условия существования электрического тока включают в себя наличие напряжения. Когда оно применяется к проводнику, все свободные электроны будут двигаться в одном направлении, создавая ток.

Любопытно об электрическом токе

Интересно то, что когда электрическая энергия передается через проводник со скоростью света, сами электроны движутся намного медленнее. На самом деле, если бы вы не спеша прошли рядом с токопроводящей проволокой, ваша скорость была бы в 100 раз быстрее, чем двигаются электроны. Это обусловлено тем, что им не нужно преодолевать огромные расстояния, чтобы передавать энергию друг другу.

Прямой и переменный ток

Сегодня широко используются два разных типа тока - постоянный и переменный. В первом электроны движутся в одном направлении, с «отрицательной» стороны на «положительную». Переменный ток толкает электроны назад и вперед, изменяя направление потока несколько раз в секунду.

Генераторы, используемые на электростанциях для производства электроэнергии, предназначены для производства переменного тока. Вы, наверное, никогда не обращали внимание на то, что свет в вашем доме на самом деле мерцает, поскольку текущее направление меняется, но это происходит слишком быстро, чтобы глаза смогли это распознать.

Каковы условия существования постоянного электрического тока? Зачем нам нужны оба типа и какой из них лучше? Это хорошие вопросы. Тот факт, что мы все еще используем оба типа тока, говорит о том, что они оба служат определенным целям. Еще в XIX веке было понятно, что эффективная передача мощности на большие расстояния между электростанцией и домом была возможна лишь при очень высоком напряжении. Но проблема заключалась в том, что отправка действительно высокого напряжения была чрезвычайно опасной для людей.

Решение этой проблемы состояло в том, чтобы уменьшить напряжение вне дома, прежде чем отправлять его внутрь. И по сей день постоянный электрический ток используется для передачи на большие расстояния, в основном из-за его способности легко преобразовываться в другие напряжения.

Как работает электрический ток

Условия существования электрического тока включают в себя наличие заряженных частиц, проводника и напряжения. Многие ученые изучали электричество и обнаружили, что существует два его типа: статическое и текущее.

Именно второе играет огромную роль в повседневной жизни любого человека, так как представляет собой электрический ток, который проходит через цепь. Мы ежедневно используем его для питания наших домов и многого другого.

Что такое электрический ток?

Когда в цепи циркулируют электрические заряды из одного места в другое, возникает электрический ток. Условия существования электрического тока включают в себя, помимо заряженных частиц, наличие проводника. Чаще всего это провод. Схема его представляет собой замкнутый контур, в котором ток проходит от источника питания. Когда же цепь разомкнута, он не может закончить путь. Например, когда свет в вашей комнате выключен, цепь разомкнута, но когда цепь замкнута, свет горит.

Мощность тока

На условия существования электрического тока в проводнике большое влияние оказывает такая характеристика напряжения, как мощность. Это показатель того, сколько энергии используется в течение определенного периода времени.

Существует много разных единиц, которые могут использоваться для выражения данной характеристики. Однако электрическая мощность почти измеряется в ваттах. Один ватт равен одному джоулю в секунду.

Электрический заряд в движении

Каковы условия существования электрического тока? Он может принимать форму внезапного разряда статического электричества, такого как молния или искра от трения с шерстяной тканью. Однако чаще, когда мы говорим об электрическом токе, мы имеем в виду более контролируемую форму электричества, благодаря которой горит свет и работают приборы. Большая часть электрического заряда переносится отрицательными электронами и положительными протонами внутри атома. Однако вторые в основном иммобилизованы внутри атомных ядер, поэтому работа по переносу заряда из одного места в другое проделывается электронами.

Электроны в проводящем материале, таком как металл, в значительной степени свободны для перехода от одного атома к другому вдоль их зон проводимости, которые являются высшими электронными орбитами. Достаточная электродвижущая сила или напряжение создает дисбаланс заряда, который может вызвать движение электронов через проводник в виде электрического тока.

Если провести аналогию с водой, то возьмем, к примеру, трубу. Когда мы открываем клапан на одном конце, чтобы вода попала в трубу, то нам не нужно ждать, пока эта вода проложит весь путь до ее конца. Мы получаем воду на другом конце почти мгновенно, потому что входящая вода толкает воду, которая уже находится в трубе. Это то, что происходит в случае электрического тока в проводе.

Электрический ток: условия существования электрического тока

Электрический ток обычно рассматривается как поток электронов. Когда два конца батареи соединены друг с другом с помощью металлической проволоки, эта заряженная масса через провод попадает из одного конца (электрода или полюса) батареи на противоположный. Итак, назовем условия существования электрического тока:

  1. Заряженные частицы.
  2. Проводник.
  3. Источник напряжения.

Однако не все так просто. Какие условия необходимы для существования электрического тока? На этот вопрос можно ответить более подробно, рассмотрев следующие характеристики:

  • Разность потенциалов (напряжение). Это одно из обязательных условий. Между 2 точками должна быть разница потенциалов, означающая, что отталкивающая сила, которая создается заряженными частицами в одном месте, должна быть больше, чем их сила в другой точке. Источники напряжения, как правило, не встречаются в природе, и электроны распределяются в окружающей среде достаточно равномерно. Все же ученым удалось изобрести определенные типы приборов, где эти заряженные частицы могут накапливаться, тем самым создавая то самое необходимое напряжение (например, в батарейках).
  • Электрическое сопротивление (проводник). Это второе важное условие, которое необходимо для существования электротока. Это путь, по которому перемещаются заряженные частицы. В качестве проводников выступают только те материалы, которые дают возможность электронам свободно перемещаться. Те же, у которых этой способности нет, называются изоляторами. Например, проволока из металла будет отличным проводником, в то время как ее резиновая оболочка будет превосходным изолятором.

Тщательно изучив условия возникновения и существования электрического тока, люди смогли приручить эту мощную и опасную стихию и направить ее на благо человечества.

Для возникновения и поддержания тока в какой-либо среде необходимо выполнение двух условий:

В разных средах носителями электрического тока являются разные заряженные частицы.

Электрическое поле в среде необходимо для создания направленного движения свободных зарядов. Как известно, на заряд q в электрическом поле напряженностью E действует сила F = q*E, которая и заставляет свободные заряды двигаться в направлении электрического поля. Признаком существования в проводнике электрического поля является наличие не равной нулю разности потенциалов между любыми двумя точками проводника,

Однако, электрические силы не могут длительное время поддерживать электрический ток. Направленное движение электрических зарядов через некоторое время приводит к выравниванию потенциалов на концах проводника и, следовательно, к исчезновению в нем электрического поля.

Для поддержания тока в электрической цепи на заряды кроме кулоновских сил должны действовать силы неэлектрической природы (сторонние силы).

Устройство, создающее сторонние силы, поддерживающее разность потенциалов в цепи и преобразующее различные виды энергии в электрическую энергию, называется источником тока.

Для существования электрического тока в замкнутой цепи необходимо включение в нее источника тока.

Основные характеристики

1. Сила тока - I, единица измерения - 1 А (Ампер).

Силой тока называется величина, равная заряду, протекающему через поперечное сечение проводника за единицу времени.

Формула (1) справедлива для постоянного тока, при котором сила тока и его направление не изменяются со временем. Если сила тока и его направление изменяются со временем, то такой ток называется переменным.

Для переменного тока:

Я = НтДд /Дт,(*)

т.е. = q", гдеq"- производная от заряда по времени.

2. Плотность тока - j, единица измерения - 1 А/м2.

Плотностью тока называется величина, равная силе тока, протекающего через единичное поперечное сечение проводника:

3. Электродвижущая сила источника тока - э.д.с. (e), единица измерения - 1 В (Вольт). Э.д.с.- физическая величина, равная работе, совершаемой сторонними силами при перемещении по электрической цепи единичного положительного заряда:

е = а друг. / г. (3)

4. Сопротивление проводника - R, единица измерения - 1 Ом.

Под действием электрического поля в вакууме свободные заряды двигались бы ускоренно. В веществе они движутся в среднем равномерно, т.к. часть энергии отдают частицам вещества при столкновениях.

Теория утверждает, что энергия упорядоченного движения зарядов рассеивается на искажениях кристаллической решетки. Исходя из природы электрического сопротивления, следует, что

R = R* L / S Э, (4)

l - длина проводника,

S - площадь поперечного сечения,

r - коэффициент пропорциональности, названный удельным сопротивлением материала.

Эта формула хорошо подтверждается на опыте.

Взаимодействие частиц проводника с движущимися в токе зарядами зависит от хаотического движения частиц, т.е. от температуры проводника. Известно, что

г = г 0 (1 + т), (5)

R = R 0 (1 + т).

Коэффициент a называется температурным коэффициентом сопротивления:

а = (R - R0) / R0 * т.

Для химически чистых металлов a > 0 и равно 1/273 К-1. Для сплавов температурные коэффициенты имеют меньшее значение. Зависимость r(t)для металлов линейная:

В 1911 году открыто явление сверхпроводимости , заключающееся в том, что при температуре, близкой к абсолютному нулю, сопротивление некоторых металлов падает скачком до нуля.

У некоторых веществ (например, у электролитов и полупроводников) удельное сопротивление с ростом температуры уменьшается, что объясняется ростом концентрации свободных зарядов.

Величина, обратная удельному сопротивлению, называется удельной электрической проводимостью с

с = 1 / г. (7)

5. Напряжение - U , единица измерения - 1 В.

Напряжение - физическая величина, равная работе, совершаемой сторонними и электрическими силами при перемещении единичного положительного заряда.

U = (ст. + Аэл.) / Q (8)

Так как Аст./q = e, а Аэл./q = f1-f2, то

U = е + (е1 - е2) (9)

2.7.2 Основы электробезопасности

При эксплуатации и ремонте электрического оборудования и сетей человек может оказаться в сфере действия электрического поля или непосредственном соприкосновении с находящимися под напряжением проводками электрического тока. В результате прохождения тока через человека может произойти нарушение его жизнедеятельных функций.

Опасность поражения электрическим током усугубляется тем, что, во первых, ток не имеет внешних признаков и как правило человек без специальных приборов не может заблаговременно обнаружить грозящую ему опасность; во вторых, воздействия тока на человека в большинстве случаев приводит к серьезным нарушениям наиболее важных жизнедеятельных систем, таких как центральная нервная, сердечно-сосудистая и дыхательная, что увеличивает тяжесть поражения; в третьих, переменный ток способен вызвать интенсивные судороги мышц, приводящие к не отпускающему эффекту, при котором человек самостоятельно не может освободиться от воздействия тока; в четвертых,воздействие тока вызывает у человека резкую реакцию отдергивания, а в ряде случаев и потерю сознания, что при работе навысоте может привести к травмированию в результате падения.

Электрический ток, проходя через тело человека, может оказывать биологическое, тепловое, механическое и химическое действия. Биологическое действие заключается в способности электрического тока раздражать и возбуждать живые ткани организма, тепловое – в способности вызывать ожоги тела, механическое – приводить к разрыву тканей, а химическое – к электролизу крови.

Воздействие электрического тока на организм человека может явиться причиной электротравмы. Электротравма – это травма, вызванная воздействием электрического тока или электрической дуги. Условно электротравмы делят на местные и общие. При местных электротравмах возникает местное повреждение организма, выражающиеся в появлении электрических ожогов,

электрических знаков, в металлизации кожи, механических повреждениях и электроофтальмии (воспаление наружных оболочек глаз). Общие электротравмы, или электрические удары, приводят к поражению всего организма, выражающемуся в нарушении или полном прекращении деятельностинаиболее жизненно важных органов и систем – легких (дыхания), сердца (кровообращения).

Электрический удар представляет собой возбуждение живых тканей организма проходящим через него электрическим током, сопровождающееся резкими судорожными сокращениями мышц, в том числе мышцы сердца, что может привести к остановке сердца.

Под местными электротравмами понимается повреждение кожи и мышечной ткани, а иногда связок и костей. К ним можно отнести электрические ожоги, электрические знаки, металлизацию кожи, механические повреждения.

Электрические ожоги - наиболее распространенная электротравма, возникает в результате локального воздействия тока на ткани. Ожоги бывают двух видов - контактный и дуговой.

Контактный ожог является следствием преобразования электрической энергии в тепловую и возникает в основном в электроустановках напряжением до 1 000 В.

Электрический ожог – это как бы аварийная система, защита организма, так как обуглившиеся ткани в силу большей сопротивляемости, чем обычная кожа, не позволяют электричеству проникнуть вглубь, к жизненно важным системам и органам. Иначе говоря, благодаря ожогу ток заходит в тупик.

Когда организм и источник напряжения соприкасались неплотно, ожоги образуются на местах входа и выхода тока. Если ток проходит по телу несколько раз разными путями, возникают множественные ожоги.

Множественные ожоги чаще всего случаются при напряжении до 380 В из-за того, что такое напряжение “примагничивает” человека и требуется время на отсоединение. Высоковольтный ток такой “липучестью” не обладает.

Наоборот, он отбрасывает человека, но и такого короткого контакта достаточно для серьезных глубоких ожогов. При напряжении свыше 1 000 В случаются электротравмы с обширными глубокими ожогами, поскольку в этом случае температура поднимается по всему пути следования тока.

Оценивать опасность воздействия электрического тока на человека проявляются три качественно отличные ответные реакции. Это прежде всего ощущение, более судорожное сокращение мышц (неотпускание для переменного тока и болевой эффект постоянного) и, наконец, фисрилляция сердца. Электрические токи, вызывающие соответствующую ответную реакцию, подразделяют на ощутимые, неотпускающие и фибрилляционные.

С увеличением тока четко проявляются три качественно отличные

ответные реакции. Это прежде всего ощущение, более судорожное сокращение

мышц (неотпускание для переменного тока и болевой эффект постоянного) и, наконец, фисрилляция сердца. Электрические токи, вызывающие соответствующую ответную реакцию, подразделяют на ощутимые, неотпускающие и фибрилляционные.

В целях обеспечения электробезопасности используют следующие технические способы и средства (часто в сочетании одного с другим): защитное заземление; зануление; защитное отключение; выравнивание потенциалов; малое напряжение; электрическое разделение сети; изоляцию токоведущих частей; оградительные устройства; предупредительную сигнализацию, блокировку, знаки безопасности; электрозащитные средства, предохранительные приспособления и др.

Защитное заземление - преднамеренное электрическое соединение с землей или ее эквивалентом металлических не токоведущих частей, которые могут оказаться под напряжением в результате повреждения изоляции (ГОСТ 12.1.009-76). Защитное заземление применяется в сетях напряжением до 1000 В с изолированной нейтралью и в сетях напряжением выше 1000 В как с изолированной, так и с заземленной нейтралью.

Защитное отключение - это быстродействующая защита, обеспечивающая автоматическое отключение электроустановки (не более чем за 0,2 с) при возникновении в ней повреждения, в том числе при пробое изоляции на корпус оборудования.

Выравнивание потенциалов - метод снижения напряжений прикосновения и шага между точками электрической цепи, к которым возможно одновременное прикосновение или на которых может одновременно стоять человек.

Малое напряжение - номинальное напряжение не более 42 В, применяемое в целях уменьшения опасности поражения электрическим током.

Электрическое разделение сети - разделение сети на отдельные, электрически не связанные между собой, участки с помощью разделяющего

трансформатора. Если сильно разветвленную электрическую сеть, имеющую

большую емкость и малое сопротивление изоляции, разделить на ряд небольших сетей такого же напряжения, то они будут обладать незначительной емкостью и высоким сопротивлением изоляции. Опасность поражения током при этом резко снижается.

Изоляция в электроустановках служит для защиты от случайного прикосновения к токоведущим частям. Различают рабочую, дополнительную, двойную и усиленную электрическую изоляцию.

Оградительные устройства используются для предотвращения прикосновения или опасного приближения к токоведущим частям.

Блокировки широко применяются в электроустановках. Они бывают механическими, электрическими, электромагнитными и др. Блокировки обеспечивают снятие напряжения с токоведущих частей при попытке проникнуть к ним при открывании ограждения без снятия напряжения.

Последние материалы сайта