Шкалы цветового фона с коэффициентом отражения света. Коэффициент отражения света цветными поверхностями. Коэффициент пропускания солнечной энергии

08.09.2022
Редкие невестки могут похвастаться, что у них ровные и дружеские отношения со свекровью. Обычно случается с точностью до наоборот

Коэффицие́нт отраже́ния - безразмерная физическая величина , характеризующая способность тела отражать падающее на него излучение . В качестве буквенного обозначения используется греческая \rho или латинская R .

Определения

Количественно коэффициент отражения равен отношению потока излучения , отраженного телом, к потоку, упавшему на тело :

\rho = \frac{\Phi}{\Phi_0}.

Сумма коэффициента отражения и коэффициентов поглощения , пропускания и рассеяния равна единице. Это утверждение следует из закона сохранения энергии .

В тех случаях, когда спектр падающего излучения настолько узок, что его можно считать монохроматическим , говорят о монохроматическом коэффициенте отражения. Если спектр падающего на тело излучения широк, то соответствующий коэффициент отражения иногда называют интегральным .

В общем случае значение коэффициента отражения тела зависит как от свойств самого тела, так и от угла падения, спектрального состава и поляризации излучения. Вследствие зависимости коэффициента отражения поверхности тела от длины волны падающего на него света визуально тело воспринимается как окрашенное в тот или иной цвет.

Коэффициент зеркального отражения \rho_r~(R_r)

Характеризует способность тел зеркально отражать падающее на них излучение. Количественно определяется отношением зеркально отраженного потока излучения \Phi_r к падающему потоку:

\rho_r=\frac{\Phi_r}{\Phi_0}.

Зеркальное (направленное) отражение происходит в тех случаях, когда излучение падает на поверхность, размеры неровностей которой значительно меньше, чем длина волны излучения.

Коэффициент диффузного отражения \rho_d~(R_d)

Характеризует способность тел диффузно отражать падающее на них излучение. Количественно определяется отношением диффузно отраженного потока излучения \Phi_d к падающему потоку:

\rho_d=\frac{\Phi_d}{\Phi_0}.

Если одновременно происходят и зеркальное, и диффузное отражения, то коэффициент отражения \rho является суммой коэффициентов зеркального \rho_r и диффузного \rho_d отражений:

\rho=\rho_r+\rho_d.

См. также

Напишите отзыв о статье "Коэффициент отражения (оптика)"

Примечания

Отрывок, характеризующий Коэффициент отражения (оптика)

– Ах, Наташа! – сказала она.
– Видела? Видела? Что видела? – вскрикнула Наташа, поддерживая зеркало.
Соня ничего не видала, она только что хотела замигать глазами и встать, когда услыхала голос Наташи, сказавшей «непременно»… Ей не хотелось обмануть ни Дуняшу, ни Наташу, и тяжело было сидеть. Она сама не знала, как и вследствие чего у нее вырвался крик, когда она закрыла глаза рукою.
– Его видела? – спросила Наташа, хватая ее за руку.
– Да. Постой… я… видела его, – невольно сказала Соня, еще не зная, кого разумела Наташа под словом его: его – Николая или его – Андрея.
«Но отчего же мне не сказать, что я видела? Ведь видят же другие! И кто же может уличить меня в том, что я видела или не видала?» мелькнуло в голове Сони.
– Да, я его видела, – сказала она.
– Как же? Как же? Стоит или лежит?
– Нет, я видела… То ничего не было, вдруг вижу, что он лежит.
– Андрей лежит? Он болен? – испуганно остановившимися глазами глядя на подругу, спрашивала Наташа.
– Нет, напротив, – напротив, веселое лицо, и он обернулся ко мне, – и в ту минуту как она говорила, ей самой казалось, что она видела то, что говорила.
– Ну а потом, Соня?…
– Тут я не рассмотрела, что то синее и красное…
– Соня! когда он вернется? Когда я увижу его! Боже мой, как я боюсь за него и за себя, и за всё мне страшно… – заговорила Наташа, и не отвечая ни слова на утешения Сони, легла в постель и долго после того, как потушили свечу, с открытыми глазами, неподвижно лежала на постели и смотрела на морозный, лунный свет сквозь замерзшие окна.

Вскоре после святок Николай объявил матери о своей любви к Соне и о твердом решении жениться на ней. Графиня, давно замечавшая то, что происходило между Соней и Николаем, и ожидавшая этого объяснения, молча выслушала его слова и сказала сыну, что он может жениться на ком хочет; но что ни она, ни отец не дадут ему благословения на такой брак. В первый раз Николай почувствовал, что мать недовольна им, что несмотря на всю свою любовь к нему, она не уступит ему. Она, холодно и не глядя на сына, послала за мужем; и, когда он пришел, графиня хотела коротко и холодно в присутствии Николая сообщить ему в чем дело, но не выдержала: заплакала слезами досады и вышла из комнаты. Старый граф стал нерешительно усовещивать Николая и просить его отказаться от своего намерения. Николай отвечал, что он не может изменить своему слову, и отец, вздохнув и очевидно смущенный, весьма скоро перервал свою речь и пошел к графине. При всех столкновениях с сыном, графа не оставляло сознание своей виноватости перед ним за расстройство дел, и потому он не мог сердиться на сына за отказ жениться на богатой невесте и за выбор бесприданной Сони, – он только при этом случае живее вспоминал то, что, ежели бы дела не были расстроены, нельзя было для Николая желать лучшей жены, чем Соня; и что виновен в расстройстве дел только один он с своим Митенькой и с своими непреодолимыми привычками.

От неоднородности в среде распространения. Примерами неоднородности могут быть нагрузка в линии передачи или граница раздела двух однородных сред с различными значениями электрофизических параметров.

- отношение комплексной амплитуды напряжения отраженной волны к комплексной амплитуде напряжения падающей волны в заданном сечении линии передачи .

Коэффициент отражения по току - отношение комплексной амплитуды тока отраженной волны к комплексной амплитуде тока падающей волны в заданном сечении линии передачи .

Коэффициент отражения радиоволны - отношение указанной составляющей напряженности электрического поля в отраженной радиоволне к той же самой составляющей в падающей радиоволне .

Коэффициент отражения по напряжению

Коэффициент отражения по напряжению (в методе комплексных амплитуд) - комплексная величина, равная отношению комплексных амплитуд отражённой и падающей волн:

K U = U отр / U пад = |K U |e jφ где |K U | - модуль коэффициента отражения, φ - фаза коэффициента отражения, определяющая запаздывание отражённой волны относительно падающей.

Коэффициент отражения по напряжению в линии передачи однозначно связан с её волновым сопротивлением ρ и импедансом Z нагр нагрузки:

K U = (Z нагр - ρ) / (Z нагр + ρ) .

Коэффициент отражения по мощности - величина, равная отношению мощности (потока мощности, плотности потока мощности), переносимой отраженной волной, мощности, переносимой падающей волной:

K P = P отр / P пад = |K U | 2

Другие величины, характеризующие отражение в линии передачи

  • Коэффициент стоячей волны - K св = (1 + |K U |) / (1 - |K U |)
  • Коэффициент бегущей волны - K бв = (1 - |K U |) / (1 + |K U |)

Метрологические аспекты

Измерения

  • Для измерения коэффициента отражения применяются измерительные линии , измерители полных сопротивлений , панорамные измерители КСВ (ими измеряется только модуль, без фазы), а также векторные анализаторы цепей (могут измерять как модуль так и фазу).
  • Мерами отражения являются различные измерительные нагрузки - активные, реактивные с изменяемой фазой и др.

Эталоны

  • Государственный эталон единицы волнового сопротивления в коаксиальных волноводах ГЭТ 75-2011 (недоступная ссылка) - находится в СНИИМ (Новосибирск)
  • Установка высшей точности для воспроизведения единицы комплексного коэффициента отражения электромагнитных волн в волноводных трактах прямоугольного сечения в диапазоне частот 2,59...37,5 ГГц УВТ 33-В-91 - находится в СНИИМ (Новосибирск)
  • Установка высшей точности для воспроизведения единицы комплексного коэффициента отражения (коэффициента стоячей волны напряжения и фазы) электромагнитных волн в волноводных трактах прямоугольного сечения в диапазоне частот 2,14 … 37,5 ГГц УВТ 33-А-89 - находится во

При прохождении границ раздела сред акустические волны испытывают не только отражение и преломление, но и трансформацию волн одного типа в другой. Рассмотрим простейший случай нормального падения волны на границу двух протяженных сред (рис. 3.1). Трансформация волн в этом случае отсутствует.

Рассмотрим энергетические соотношения между падающей, отраженной и прошедшей волнами. Они характеризуются коэффициентами отражения и преломления.

Коэффициентом отражения по амплитуде называется отношение амплитуд отраженной и падающей волн:

Коэффициентом прохождения по амплитуде называется отношение амплитуды прошедшей и падающей волн:

Указанные коэффициенты можно определить, зная акустические характеристики сред. При падении волны из среды 1 в среду 2 коэффициент отражения определяется как

, (3.3)

где , – акустические импедансы сред 1 и 2 соответственно.

При падении волны из среды 1 в среду 2 коэффициент прохождения обозначается и определяется как

. (3.4)

При падении волны из среды 2 в среду 1 коэффициент прохождения обозначается и определяется как

. (3.5)

Из формулы (3.3) для коэффициента отражения видно, что чем больше отличаются акустические импедансы сред, тем большая часть энергии звуковой волны отразится от границы раздела двух сред. Этим определяется как возможность, так и эффективность выявления нарушений сплошности материала (включений среды с акустическим сопротивлением, отличающимся от сопротивления контролируемого материала).

Именно из-за различий в значениях коэффициентов отражения шлаковые включения выявляются значительно хуже дефектов таких же размеров, но с воздушным заполнением. Отражение от несплошности, заполненной газом, приближается к 100%, а для несплошности, заполненной шлаком, этот коэффициент значительно ниже.

При нормальном падении волны на границу двух протяженных сред соотношение между амплитудами падающей, отраженной и прошедшей волны –

. (3.6)

Энергия же падающей волны в случае нормального падения на границу двух протяженных сред распределяется между отраженной и прошедшей волной по закону сохранения.

Помимо коэффициентов отражения и прохождения по амплитуде используются также коэффициенты отражения и прохождения по интенсивности.

Коэффициент отражения по интенсивности есть отношение интенсивностей отраженной и падающей волн. При нормальном падении волны

, (3.7)

где – коэффициент отражения при падении из среды 1 в среду 2;

– коэффициент отражения при падении из среды 2 в среду 1.

Коэффициент прохождения по интенсивности ­– отношение интенсивностей прошедшей и падающей волн. При падении волны по нормали

, (3.8)

где – коэффициент прохождения при падении из среды 1 в среду 2;

– коэффициент прохождения при падении из среды 2 в среду 1.

Направление падения волны не влияет на значения коэффициентов отражения и прохождения по интенсивности. Закон сохранения энергии через коэффициенты отражения и прохождения записывается следующим образом

При наклонном падении волны на границу раздела сред возможна трансформация волны одного типа в другой. Процессы отражения и прохождения в этом случае характеризуются несколькими коэффициентами отражения и прохождения в зависимости от типа падающей, отраженной и прошедшей волн. Коэффициент отражения в этом виде имеет обозначение ( – индекс, указывающий на тип падающей волны, – индекс, указывающий на тип отраженной волны). Возможны случаи , . Коэффициент прохождения обозначается ( – индекс, указывающий на тип падающей волны, – индекс, указывающий на тип прошедшей волны). Возможны случаи , и .

    Коэффициент отражения поверхности. Средневзвешенный коэффициент отражения внутренных поверхностей помещения. Коэффицент пропускания.

Важнейшим свойством поверхности объекта, определяющий его цвет и яркость, является коэффициент отражения поверхности на различных частотах: в видимом, инфракрасном и радиодиапазоне. Коэффициент отражения поверхности (р) характеризует способность поверхности отражать падающий на нее световой поток; определяется отношением светового потока отраженного от поверхности, к падающему на нее световому потоку

Средневзвешенный коэффициент отражения внутренных поверхностей помещения (р ср ) где S ст, S пот, S пол – соответственно площади стен, потолка и пола, м 2 а Р ст, Р пот, Р пол – соответственно коэффиценты отражения стен, потолка и пола.

Коэффицент пропускания, - отношение светового потока, прошедшего через слой, к световому потоку, падающему на слой: τ=F/F. Коэффициент пропускания является мерой прозрачности слоя. В зависимости от характера изменения пучка при прохождении через слой различают пропускание направленное, рассеянное, направленно-рассеянное и смешанное. Совершенно очевидно, что коэффициент пропускания всегда меньше единицы, поскольку все тела более или менее поглощают проходящий через них свет и поглощение тем больше, чем толще слой.

3. Естественное освещение кео

Что такое коэффициент естественной освещенности (КЕО)?

Это выраженное в процентах отношение естественной освещенности Е В ­ в какой либо точке на рабочей поверхности внутри помещении к одновременному значению наружной горизонтальной освещенности Е н, создаваемой рассеяным светом полностьь открытого небосвода. е = Е в /Е н *100%

КЕО показывает, какую долю освещенность в данной точке помещения составляет от одновременной освещенности горизонтальной поверхности на открытом месте при диффузном свете неба

    Какие факторы влияют на значения коэффициента естественной освещенностив расчетной точке помещения?

    Неравномерная яркость небосвода

    Влияние остекления оконных проемов

    Усиление освещенности отраженным светом

4. Нормирование коэффициента естественной освещенности.

От каких факторов зависит нормативное значение коэффициента естественной освещенности?

Кроме назначения помещения(характера пыполняемой в помещении зрительной работы), при нормировании естественного освещения учитывается так же световой климат района строительства (т.е превалирующие условия наружной освещенности, количество солнечных лучей, устойчивость снежного покрова) и ориентация светового проема по сторонам горизонта. В силу этого нормированное з начение КЕО определяют по формуле

Принципы нормирования коэффициента естественной освещенности.

5. Геометрические кео

Принцип расчета геометрического КЕО

Учитывается только диффузный свет неба и не учитываются реальные условия освящения: неравномерность, яркость небосвода, влияние остекления оконных проемов, отраженный свет. Определяется с помощью гр.Данилюка. при построение небосвод представляют в виде равномерно яркой полусферы с центром в расчетной точке, светящаяся сферическая пов-ть небосвода разбита на 10 4 участков, площади проэкций которых на горизонтальную пов-ть основания одинаковы. От каждого участка небосвода в расчетную точку приводит один луч. Освещенность в точке на горизонт. пов-ти плоскостью открытия небосводом Е н соответствует 10 4 лучей. Внутри помещения Е в соответствует числу лучей N, поподающих через световой проем.

Порядок расчета (по гр. Данилюка ):

    Вычертить план и разрез в одном масштабе

    Определить положение расчетной точки и плоскости.

    На разрезе соединить расчетную точку с гранями светопро ема через которые видна небесная сфера

    По гр.1 определить количество лучей, для этого расчетную точку совместить с полюсом графика, расчётную плоскость с горизонтальной осью грани. Лучами считать расстояния между сплошными линиями. Пунктирные линии на графике 1 – 10ые доли луча.

    Поставить точку С, разделив участок пополам.

    По гр.1 определить номер полуокружности проходящей вблизи точки С.

    На плане(2ой график) разместить вертикальную ось графика совпадающую с характерным расчетным разрезом.

    Номер горизонтали соответствует номеру полуокружности, совместить с наружной гранью.

    Определить количество лучей

    Вычисляем геометрический коэффициент естественной освещенности

График Данилюка накладывается на поперечный разрез здания, центр графика совмещается с точкой. подсчитывается количество лучей n1, отмечается номер полуокружности, которая проходит через точку С-середина светового проема. График 2 накладывается на план. Его ось совпадает с горизонтом и проходит через точку С. По номеру полуокружности, подсчитываем количество лучей проходящее через световой проем.

Вычисленный по гр. Данилюка КЕО совпадает с расчетным, если небосвод равномерно яркий, в световом проеме нет заполнения(рам,стекол, и т. п.), подстилающий слой земл и поверхности помещения абсолютно черные.

Графики Данилюка

Каждый график содержит 100 лучей. Нумерация лучей идет от оси графика в обе стороны. Луч- это промежуток между сплошными линиями. Пунктирные линии на графике 1 – 10ые доли луча(50). Каждой дуге (полуокружности) на гр.1 соответствует горизонталь(горизонтальная линия) на графике 2. Дуги и горизонтали на графиках пронумерованы. Разработаны на основе закона телесного угла.

Последние материалы сайта